USN

## M.Tech. Degree Examination, January 2011

## CMOS VLSI Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Describe the construction, working and characteristics of enhancement mode MOSFET, 1 with the relevant figure. Compare the characteristics of this MOSFET with depletion mode MOSFET. (10 Marks)
  - b. Define the body effect in MOSSEFT. Derive the MOSFET current equation, in different regions of operation.
- 2 a. Explain the working of BICMOS inverter. State how the stored charges in the base are eliminated. Write the circuit diagram of BICMOS NAND gate. (10 Marks)
  - b. Describe the term tunneling and punch through in MOSFET.

(04 Marks)

- Briefly explain the pseudo nMOS inverter and the saturated load inverter, with their output characteristics. (06 Marks)
- 3 What is meant by lamda based design rules? List the lamda based design rules for metal layer, polysillicon layer and transistor. (08 Marks)
  - b. Describe with a neat sketch, pwell process for CMOS fabrication.

(08 Marks)

- c. Derive the scaling factors for the following CMOS parameters: i) Gate capacitance C<sub>g</sub>
  - ii) Gate delay T<sub>d</sub>

(04 Marks)

- a. Explain the sheet resistance and standard unit capacitance. What is the effect of fluse 4 parameter in delay unit 7?
  - b. Bring out the difference stick diagram and layout. Draw the schematic and layout diagram for the following functions.

i) 
$$Y = \overline{A + \overline{B}C}$$

ii) 
$$Y = AB + \overline{A} \overline{B}$$
.

(10 Marks)

- a. Explain the effect of parasitic capacitance in CMOS 2 input NOR gate. (04 Marks)
  - Prove that the switching threshold of NOR2 is  $V_{DD}/2$ , when  $U_{tn} = |U_{tp}|$  and  $k_p = UK_n$ .
    - By constructing Euler graph, for the pull up and pull down device, draw the stick diagram for following logic function.

$$Z = \overline{A(D+E) + BC}.$$

Also draw the optimized stick diagram for the same.

(10 Marks)

- Describe the behavior of bistable element. Derive the expression for the output voltage. (08 Marks)
  - What is clocked latch? Write and explain AOI based implementation of the clocked NOR (08 Marks) based SR latch.
  - Draw the dynamic CMOS logic and explain the pre-charge and evaluation mode. (04 Marks)
- What is pass transistor? Describe how does logic '0' transfer and logic '1' transfer takes 7 (10 Marks) place in pass transistor.
  - b. Explain the different types of current mirror circuits. How can these be used in the design of (10 Marks) a differential amplifier?
- 8 Write short notes on:
  - Differential inverter a.
  - Complementary pass logic b.
  - Domino logic c.
  - Inpact ionization in MOS transistors.

(20 Marks)



| USN |  |  |   |  |         |  |
|-----|--|--|---|--|---------|--|
|     |  |  | 1 |  | <br>. , |  |

## M.Tech. Degree Examination, January 2011

## **Advanced Microcontrollers**

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Explain the trade-offs of a low power embedded systems with the of cortex MS. (10 Marks)
  - b. Describe von-Neumann architecture and Harvard architecture. Compare them with the help of a neat diagram. (10 Marks)
- 2 a. With a neat block diagram, explain the architecture of MSP 430. (12 Marks)
  - b. List and briefly explain the characteristics of MSP 430 microcontrollers. (08 Marks)
- 3 a. With the help of a neat block diagram, explain MSP 430 CPU. Also explain the functions of dedicated registers. (12 Marks)
  - b. Explain the 3 core instruction with its format with emulation. (08 Marks)
- 4 a. Explain 16 bit WDT module, used as process or supervisor and internal timer. (10 Marks)
  - b. Describe low power operating modes, supported by the MSP 430 architecture. Explain the rules of thumb configuration of low power applications. (10 Marks)
- 5 With the help of a neat diagram, explain cortex M3. (20 Marks)
- 6 a. Explain the assemble language with basic syntax, unified assemble language and use of suffixes, with an example. (10 Marks)
  - b. Explain with a neat figure the priority levels of cortex M3, using 3 bit or 4 bit priority width, for exceptional programming. (10 Marks)
- 7 a. Explain the occurrence of interrupts or exception sequences in detail, with a neat diagram.

  (10 Marks)

b. Explain the functions associated with external interrupt, having several registers and interrupt processing. (10 Marks)

**8** Write short notes on:

(20 Marks)

- a. Wireless sensor network and MSP 430
- b. Pulse width modulation in power supplies
- c. Interrupt sources in MSP 430
- d. Frequency locked loop in MSP 430.

\* \* \* \* \*

